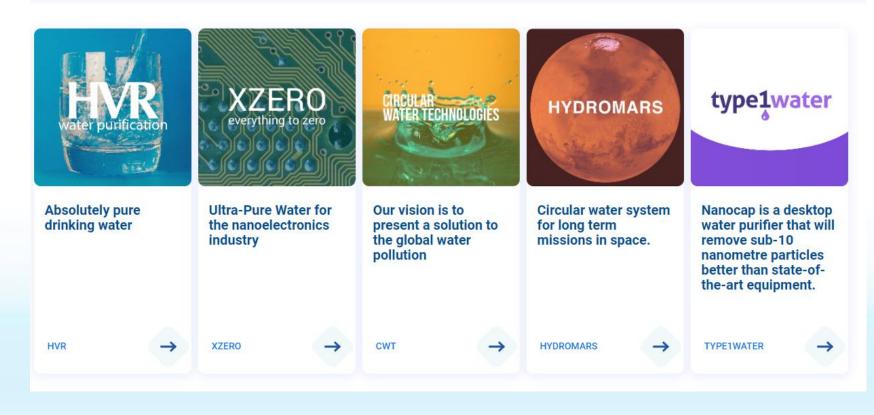


Wastewater/contaminated water treatment by HVR Water Purification MD technology

Ershad Ullah Khan, PhD

Email: ershad.khan@hvr.se


HVR Water Purification AB,

Scarab Development AB, Sweden, 2025.

www.hvr.se

TEST RESULTS

	ype of ontamination	Amount	Result	Method	Detection limits	Test by
В	acteria	14 000 (after 7 days)	BDL	Membrane filter count	-	National Bacteriologic La- boratory, Stockholm
C	Chlorine	3.4 mg/l	BDL	Photometric analysis (Per- kin Elmer)	< 0.01 mg/l	Water Protection Ass of South West Finland
S	alt water	31 000 ppm	BDL	lon chromatography	< 1 ppm	VBB Viak Stockholm
Ti	rihalomethanes	1 000 µg/l	BDL	Gas chromatography	< 1 µg/l	University of Turku, Finland
R	adon	380 Bq/l	BDL	Alfa detection	< 4 Bq/l	Swedish Radiation Protection Institute
ti	Cesium Stron- ium Plutonium Padium	2.4 Bq	BDL	Lithium Drifted Germanium Detector	< 0.1 Bq	Radiation Physics Depart- ment, Univ of Lund
A	arsenic +3	10 mg/l	BDL	AAS Graphite	< 0.003 mg/l	Analytica AB, Stockholm
A	rsenic +5	10 mg/l	BDL	AAS Graphite	< 0.003 mg/l	Analytica AB, Stockholm
A	ng nanoparticles	3100 µg /l	BDL	HPLC	< 2 µg /l	IVL Swedish Environmental Research Institute
S	iO2	10000 µg /l	BDL	AAS	< 5 µg /l	Vattenfall AB, Stockholm
0	etralin and 20 ther pharmaceu- ical residuals	4 ng/l	BDL	HPLC	< 0.8 ng/l	IVL Swedish Environmental Research Institute

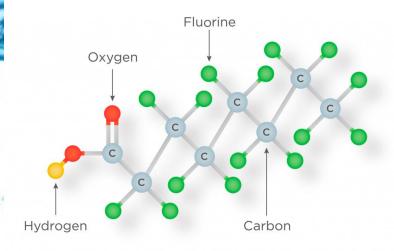
BDL = Below detection limit

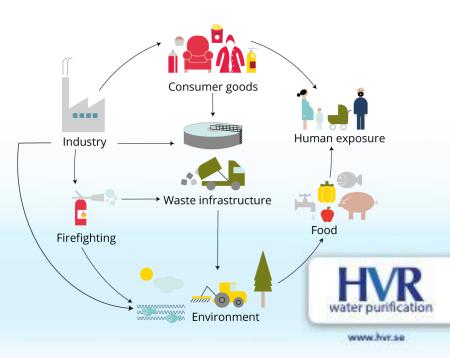
TEST RESULTS

- All non-volatile pollutants including heavy metals,
- nanoparticles, plastics,
- fluoride,
- arsenic,
- pharmaceutical residuals,
- PFAS
- Pesticides,
- pathogenic microbes (bacteria, viruses, protozoans, molds...),
- disinfectant chemicals,
- organic chemicals,
- radioactive compounds

Separation process, the purity of the water (99,9%) is constantly checked by its conductivity level.

Makes the safest drinking water wherever you are, whatever the source


Clean water recovery from textile wastewater



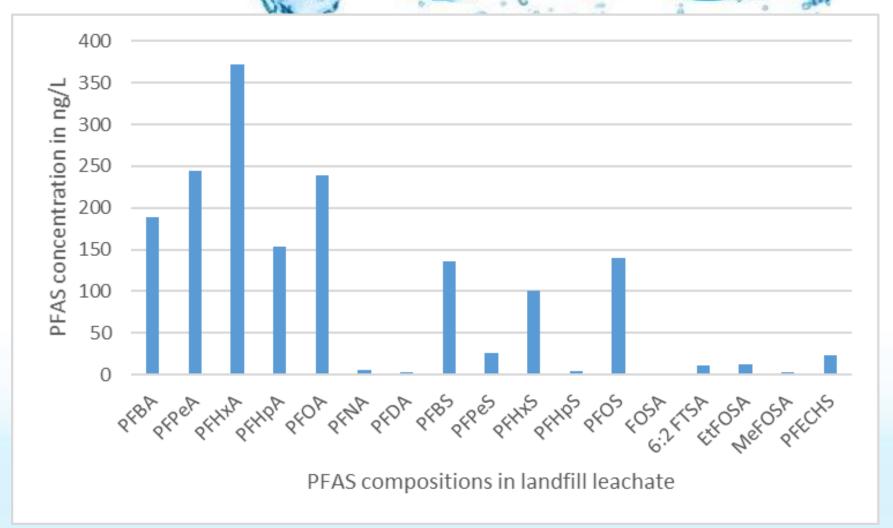
PFAS-Forever Chemicals

- Group of synthesized poly- and perfluoroalkyl substances
 - more than 4,700 PFAS, employed in several chemical industries.
- Characterized by their exceptionally strong carbon and fluorine bonds
 - Their chemistry delivers many distinctive attributes i.e., one part of chemical is hydrophobic (repelled by water), whereas other part are more ionic and water-soluble.
- Due to chemical properties, they are not metabolized rapidly
 - Bio-accumulate in human and animal bodies, eventually
- Developmental effects to fetuses, liver effects, thyroid effects, immunotoxic effects, i.e., decreased response to vaccines and possible increases in COVID-19 severity

Ex. of long and short chain PFAS

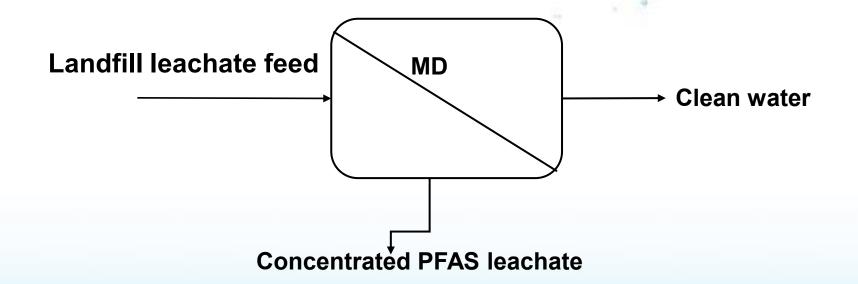
Long-Chains					
Perfluorooctanoic acid (PFOA)	Nonstick Surfaces				
Perfluorooctane sulfonate (PFOS)	Fabric Protection, Firefighting Foam				
Perfluorononanoic acid (PFNA)	Surfactant for Plastic Production				
Short-Chains					
Perfluorohexane Sulfonic Acid (PFHxS)	Firefighting Foam				
Perfluorohexanoic Acid (PFHxA)	Degradation Product of PFHxS				
Perfluorobutyrate Acid (PFBA)	Photographic Film				

Current technologies for PFAS treatment and major challenges!

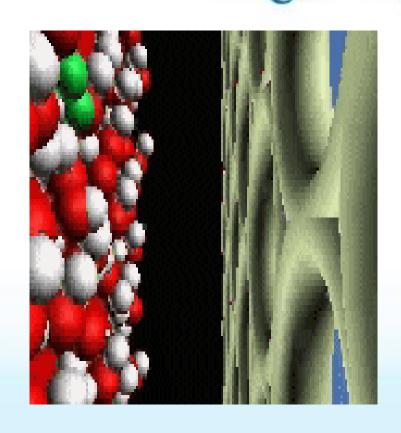

Technologies	Challenges
Reverse Osmosis (RO)	Need higher operational pressure (up to 20 bar)! Short-chain PFAS, such as perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA), were not found to be much effective separation (up to 80%)! Water recovery rate is low also!
Granulated Activated Carbon (GAC)	PFAS removal efficiency has been shown to be dependent on the PFAS chain length, functional group, pH, and is typically negatively affected by DOC! Moreover, not applicable for direct application!
Anion Ion Xchange (AIX)	PFAS removal efficiency has been shown to be dependent on the PFAS chain length, functional group, pH, and is typically negatively affected by DOC! Moreover, not applicable for direct application!
Nanofiltration (NF)	NF was found to yield over 90% removal efficiency of PFAS! Contaminated feed could not handle directly. NF membrane can not handle raw contaminated water.
Foam Fractionation (FF)	Removal efficiency to be dependent on the PFAS chain length. Moreover, FF-treated retentate would most likely require additional treatment stages for removal of organics, nutrients, metals, or polishing for additional removal of PFAS!

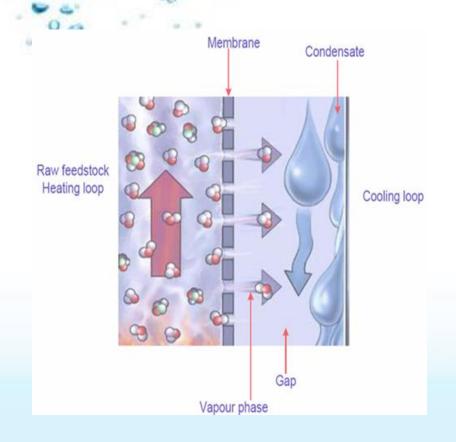
water purification

Microplastics treatment challenge

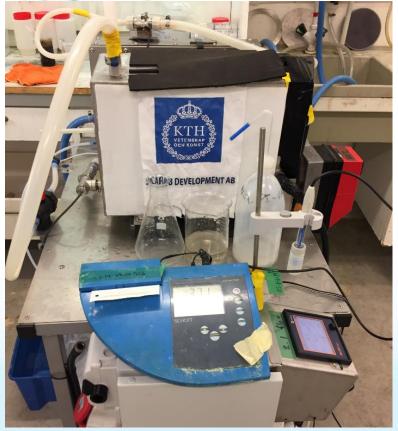

 This study investigated the removal behavior of PS MPs in a simulated drinking water treatment system including coagulation/sedimentation, sand filtration, and UV-based oxidation. The sequential process of coagulation/sedimentation and sand filtration could completely remove MPs > 20 µm, whereas a small portion of the MPs ≤ 20 µm passed through the sand media, suggesting the need for introducing processes, specifically targeted at MPs < 20 µm in the conventional water treatment systems. During the UVbased oxidation process (UV photolysis and UV/H2O2), smaller-sized fragments were generated by photochemical weathering of MPs, which was more evident in the UV/ H2O2-treated sample. Meanwhile, UV/H2O2 treatment substantially promoted the release of a mixture of low molecular weight organic compounds that might stem from radical-facilitated polymer chain scission, leading to an increase in bacterial toxicity in treated water ready for supply.

PFAS concentration in landfill leachate (Total PFAS ca. 1700 ng/L)

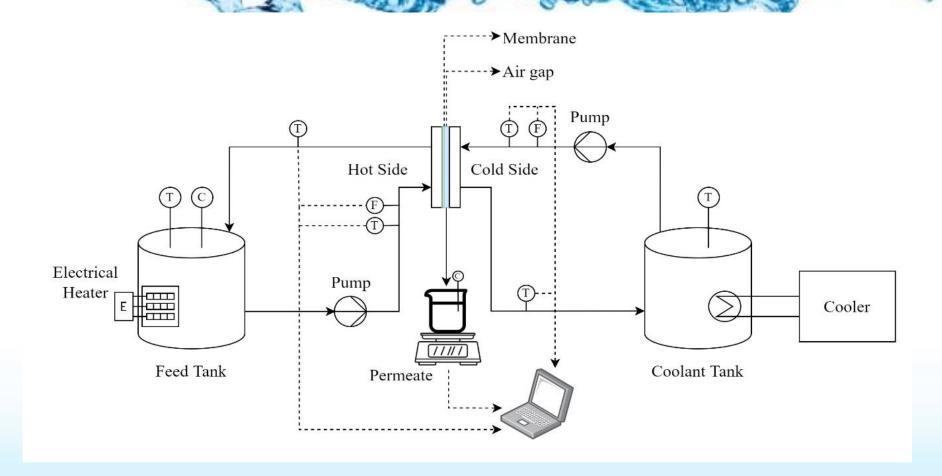



Landfill leachate PFAS sample

HVR Thermal Pervaporation



Membrane distillation lab unit



Air gap membrane distillation lab unit data

Membrane distillation unit	Parameters
Type of membrane distillation	Air-gap membrane distillation
Membrane materials	Polytetrafluoroethylene (PTFE)
Membrane porosity	80%
Average pore size	0.2 μm
Membrane area	0.32 m ²
Feedwater source	Landfill leachate
Feedwater inlet temperature	50-70°C*
Cooling water (tap water) inlet temperature	17-20°C
Feed and coolant flow rate	2.5-3.6 L/m
$\Delta T_{ m i}$	30-50°C
Number of cassettes	1

Experimental setup of air gap membrane distillation (AGMD)

Landfill leachate PFAS 26 and permeate water from MD

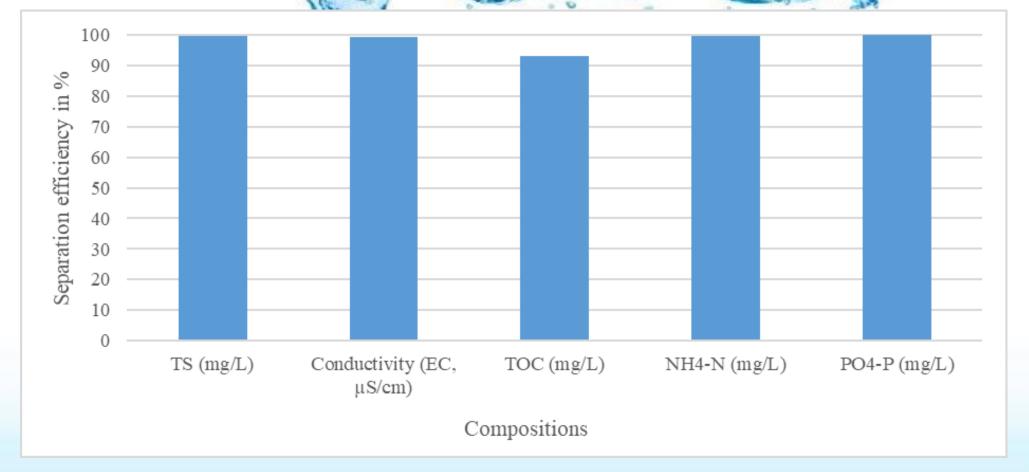
- Total PFAS 26 in landfill leachate feed ca. 1700 ng/L
- Total PFAS 26 in MD permeate water 8.96 ng/L (removal efficiency 99.5%)
- PFAS 4 in MD permeate (LOQ)!
- >80% permeate recovery (ca. 42 L permeate and 10 L concentrated leachate!)

MD product water quality analyses

The product water analyses of the three different feeds:

Parameter	Unit	Feedwater 1: As- contaminated groundwater feed (366 µg/L Högsby municipality, Sweden)	Feedwater 2: As- spiked tap water feed (300 µg/L)	Feedwater 3: As- spiked tap water feed (1600 µg/L)
As	μg/L	<0.4*	<0.03*	<0.03*
Ca ²⁺	mg/L	<0.7	<0.7	<0.7
Mg²+	mg/L	0.014*	<0.02	0.002*
Na ⁺	mg/L	0.02*	<0.17	0.012*
K⁺	mg/L	<0.03*	<0.03*	<0.03*
Conductivity	μS/cm	0.6-0.7	0.6-1.5	0.6-1.5
рН		6	6	6

^{*}below detection limit



Reject water as feed sample to HVR technology

Separation efficiency

Heavy metals separation (>99% rejection of heavy metals)

Compositions (µg/L)	Linköping Community	MD permeate*
Arsenic (As)	15	<0.2
Chromium (Cr)	15	< 0.5
Cadmium (Cd)	0.2	<0.1
Lead (Pb)	10	< 0.5
Copper (Cu)	30	1.1
Zink (Zn)	30	<2.0
Nickel (Ni)	30	< 0.5
Mercury (Hg)	0.07	<0.1

Reject water concentration factor (CF:15.8) in MD retentate

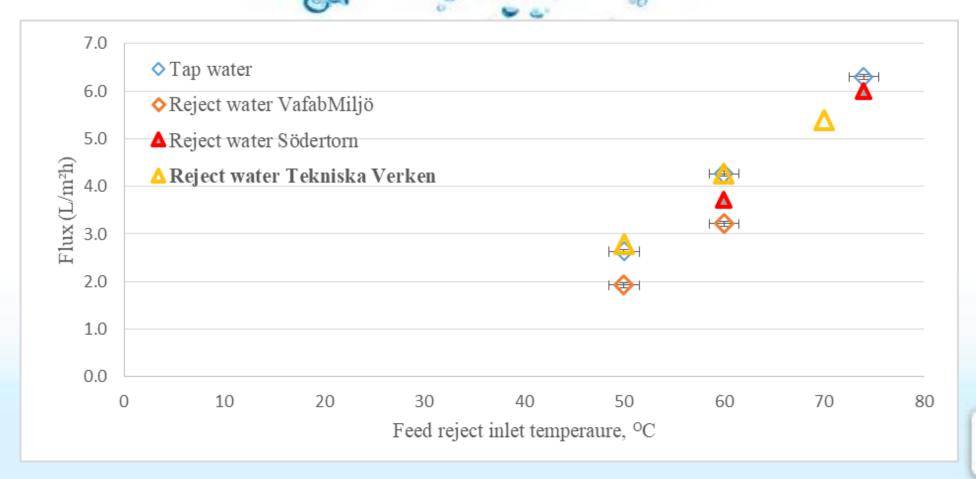
200 L reject water

Total 158 L reject water supply

MD lab unit

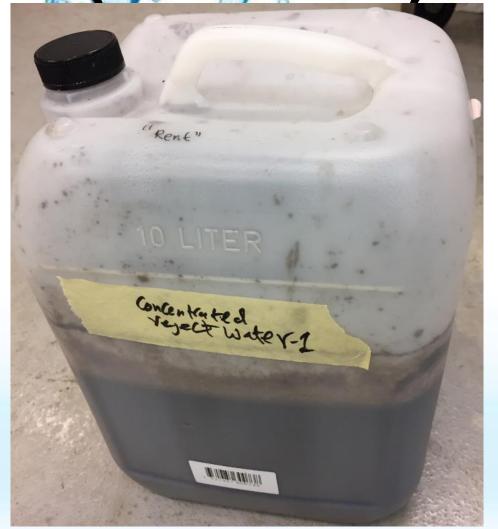
148 L permeate

10 L retentate

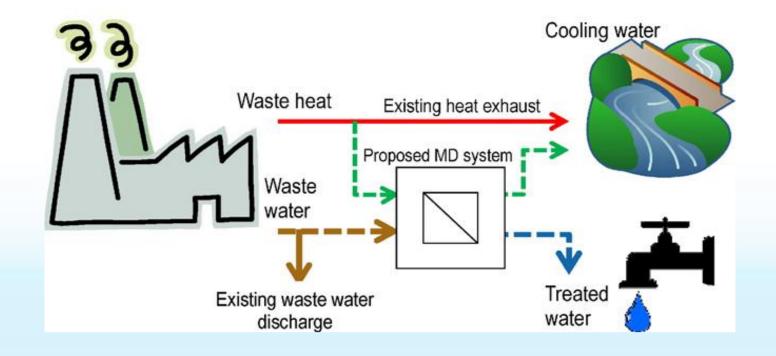


Feed reject water, MD concentrated and product waters analyses

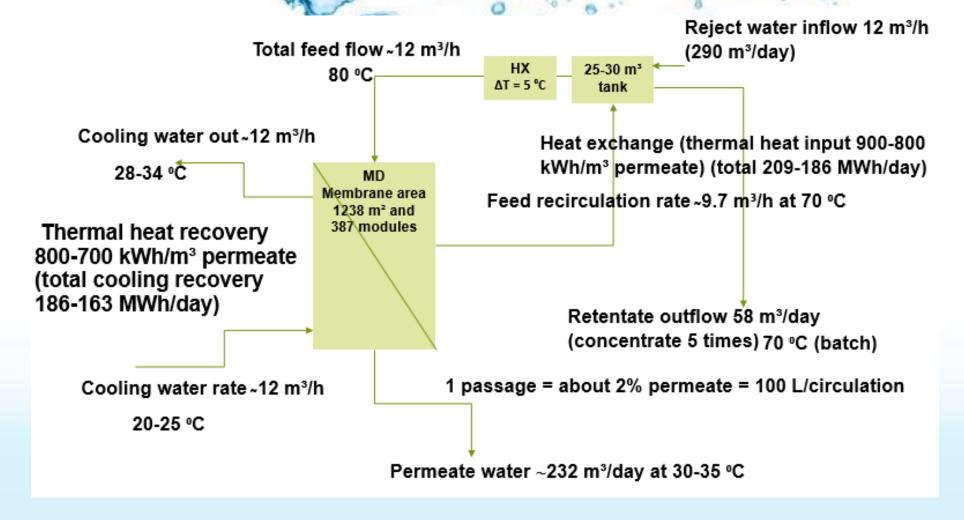
Parameters	Feed reject water	Concentrated reject	MD-product water-1	MD-product water-2	Reduction (%)
Conductivity (µS/cm)	18500	>20000	22,5	55	99,7027027
рН	2,6	2,64	3,7	3,66	
COD (mg/L)	33000	19700	394	484	98,80606061
PO4-P (mg/L)	240±15	400±10	<0,05	<0,05	99,9875
Total P (mg/L)	290±20	440±10	<0,05	0,09	
NH4-N (mg/L)	1870±10	4100±30	<0,05	<0,05	
Total Sulphur S (mg/L)	370,7	612,5	5,7	1,5	98,46236849
Total potassium K (mg/L)	135,3	246,3	2,1	2,1	98,44789357

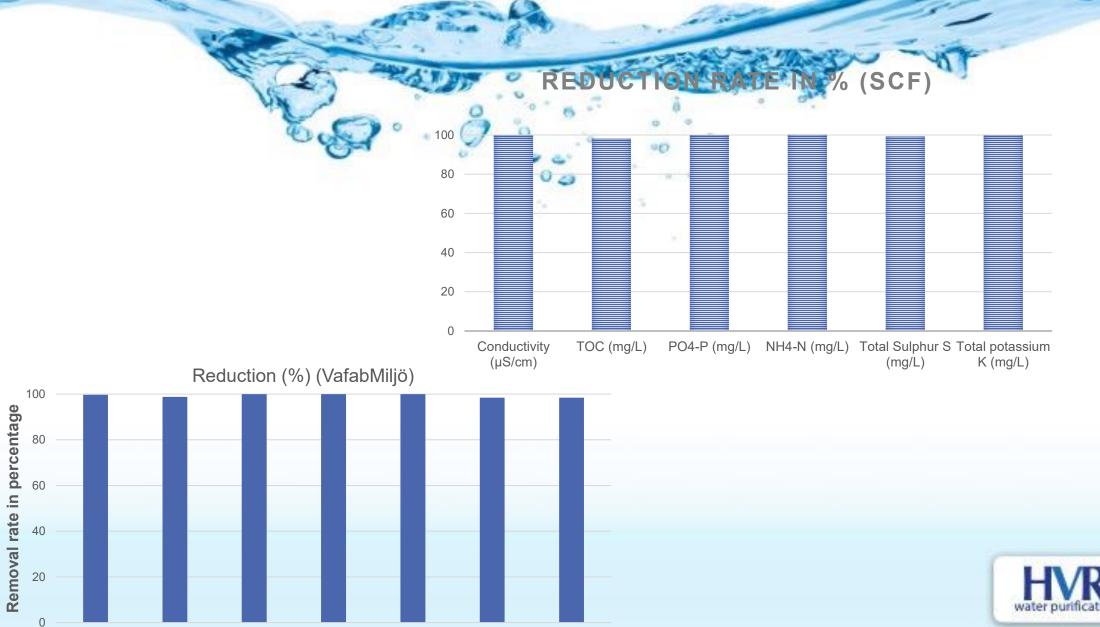


Clean water production as a function of feed temperature


Concentrated MD reject water (about 7 L)

heat: membrane fouling and energy assessment


Biogas digestate reject water and MD permeate



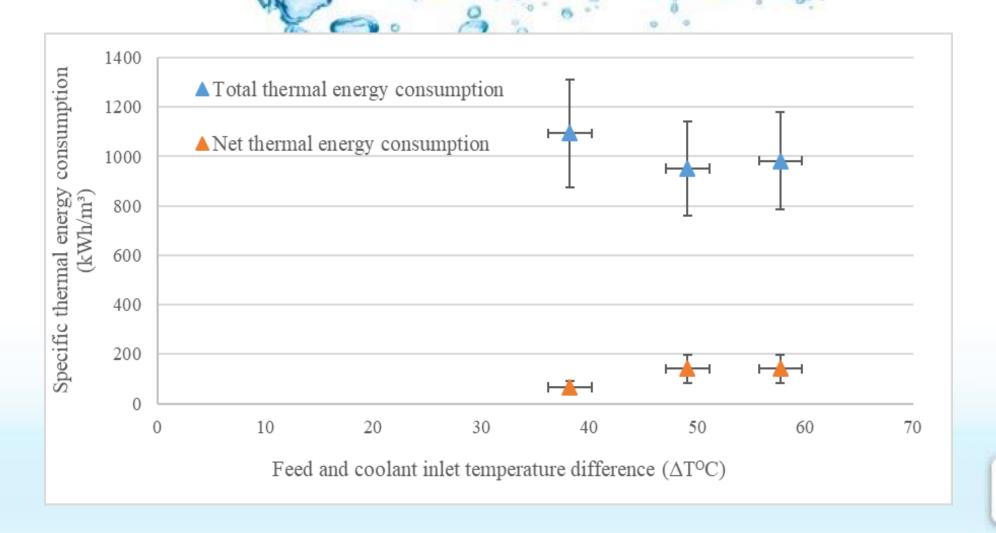
Wastewater treatment by MD at Nodra AB @ 290 m3/day

Nutrients removal rate in %

4.

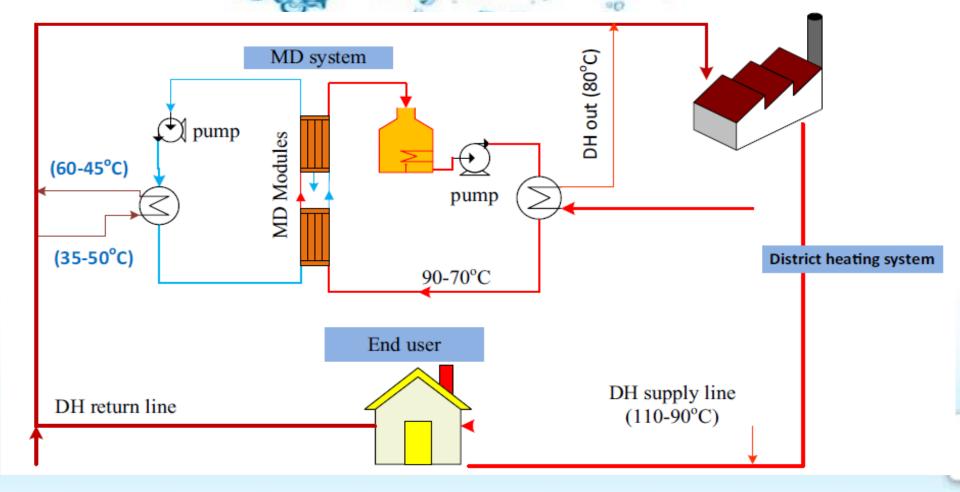
Pharmaceuticals in sewage treated wastewater

almodipine	20	1
atenolol	150-500	
bisoprolol	40-100]
caffeine	200	
carbamazepine	300-600	1
ciprofloxacin	20-100]
citalopram	150-450]
diclofenac	500	1
furosemide	600-1 000]
hydrocholothiazide	600-1 100	
ibuprofen	100	
ketoprofen	50-100	1
metoprolol	1 000–3 500	1
naproxen	50]
oxazepam	150-300	1
paracetemol	20-50	
propranolol	50-200	
ranitidine	100-300	1
sertraline	10	
sulfamethoxazole	100-200]
terbutaline	10	1
tetracycline	50	
trimetoprim	30	
warfarin	10	

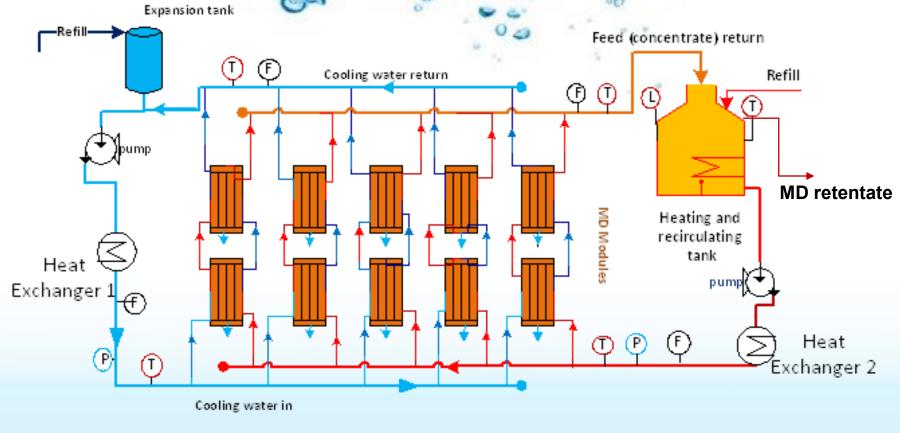

Product water quality from MD

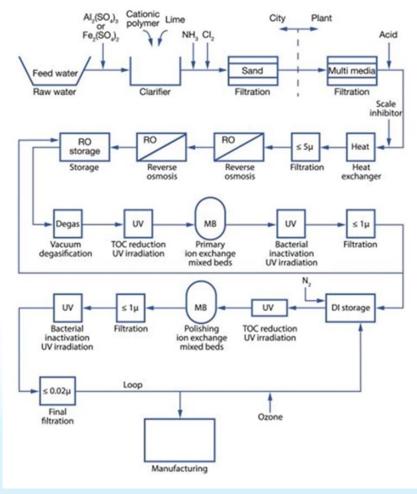
Analysis of raw and treated flue gas condensate.

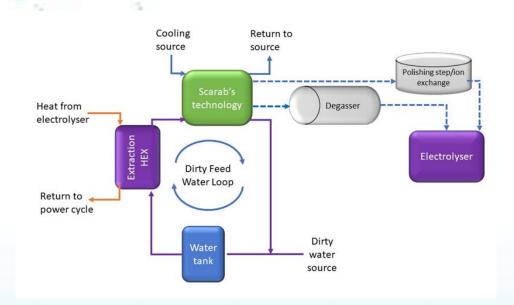
Parameter	Raw condensate	MD product	Reduction (%)	Unit
Ca	35.0	<0.2	>99%	mg/l
Fe	0.0268	< 0.004	>85%	mg/l
K	3.59	<0.5	>86%	mg/l
Mg	4.28	< 0.09	>98%	mg/l
Na	902	1.27	99.90%	mg/l
S	60.6	0.274	99.50%	mg/l
Al	89.4	5.98	93.30%	μg/l
As	25.7	<1	>96%	μg/l
Ba	55.3	<0.2	>99.6%	μg/l
Cd	0.910	< 0.05	>94.5%	μg/l
Co	0.422	0.105	75.10%	μg/l
Cr	3.21	<0.5	>84%	μg/l
Cu	32.7	<1	>96.9%	μg/l
Hg	5.64	< 0.02	>99.6%	μg/l
Mn	28.6	<0.2	>99.9%	μg/l
Ni	7.20	1.62	77.50%	μg/l
Pb	46.0	<0.2	>99.6%	µg/l
Zn	387	<2	>99.5%	μg/l
Chloride	1490	1.5	99.90%	mg/l
Sulfate	168	<0.50	>99.7%	mg/l
Ammonia	115	49	57.40%	mg/l
Alkalinity	225	180	20%	mgHCO3/
pH	8.4	8.7		
Conductivity	525	23.3	95.60%	mS/m



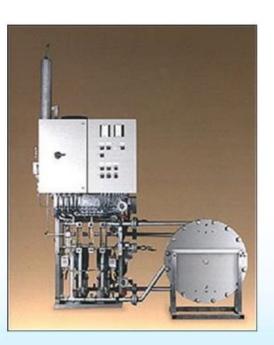
MD thermal energy demand




Configuration with the MD system placed between DH supply and return lines


No. of MD modules connection and setup

Steps needed for conventional and MD treatment Technologies


Typical upw plant

Our MD solution

Development of semi-commercial MD unit

Test unit with Sandia National Laboratories in Albuquerque, USA

Test unit in Jeddah, Saudi-Arabien . Brine concentration.

Test unit in Qatar.Treatment of produced water (contaminated water from oil and gas exploration) at the Global Sustainability Center (GWSC) at Qatar Science & Technology Park (QSTP).

Test and demonstration installation at Sjöstadsverket in Stockholm

www.hvr.se

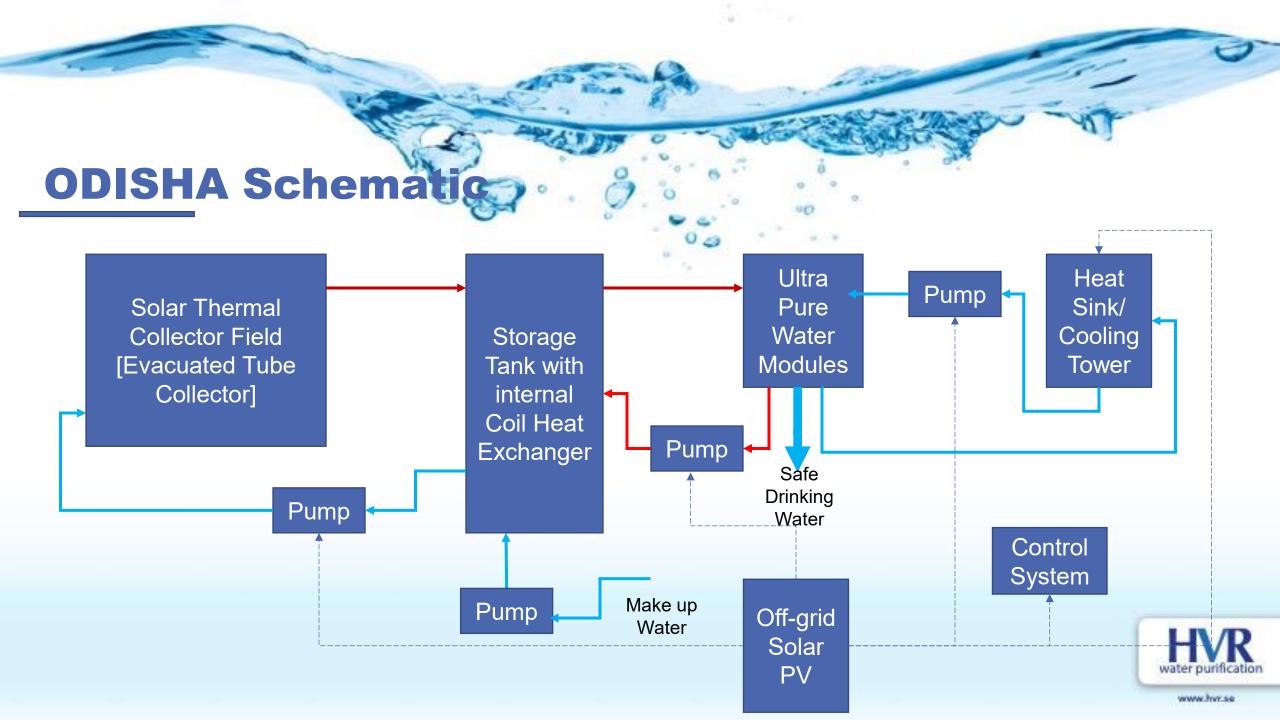
MODULAR CAPACITY

- Flat sheet AGMD module manufacturing,
- ■Product development for semiconductor market (UPW, IPA)
- ■Nanocap™

Generation 1

Generation 3

SMALL
CHEAP
LIGHT
ABILITY TO MASS PRODUCE


ODISHA PILOT

- Solar powered drinking water supply for a school of more than 200 children
- Removing fluoride from borehole water source
- Fully automated system

Thank you very much for your attention!

